i-SAIRAS@Beijing, 21 June 2016

Dynamic Visual Simultaneous Localization and Mapping for Asteroid Exploration

Naoya Takeishi and Takehisa Yairi (The University of Tokyo)

*This is a part of joint work with JAXA Hayabusa-2 team.

Background (1/3)

Navigation and mapping in asteroid exploration

- Two mutually dependent problems:
 - Navigation of spacecraft (relative to asteroid)
 - Mapping of global geometry of asteroid
- Solution from arrival near asteroid to initial descending phase

Background (2/3)

Review on procedures in Hayabusa's mission

- Mapping
 - using limb profile
 - using multi-view stereo
 - using photometric stereo
 - and (manually) merging them \(\oting\)
- Navigation
 - manual setting and tracking of landmarks using GUI tool
 - ➤ very hard work ⊗
- → These can be integrated and automated as simultaneous localization and mapping (SLAM) problem!

Background (3/3)

Review on simultaneous localization and mapping (SLAM)

- SLAM = estimation problem of:
 - location of robot (localization)
 - map of environment (mapping)
- Similar problem termed structure from motion (SFM) in CV
- SLAM/SFM application in space mission
 - many on moon/planet rovers
 - above asteroid
 - ✓ [Cocaud&Kubota, '10, '12]
 - √ [Takeishi+, '15] etc.
 - ✓ no comprehensive framework yet ⊗

[Takeishi+, '15]

Problem formulation

Main challenges of SLAM for asteroid exploration

- Asteroid rotates following rigid body dynamics
 - we want to estimate its parameters explicitly

- Spacecraft also moves
 - staying around home position, or
 - traveling by thrusters

- Range finders do not work in high altitude (~20km)
 - No LRF, no stereo camera

Contribution of this work

full formulation and implementation of SLAM solution dedicated to asteroid explorer in descending phase

Problem formulation of Asteroid SLAM (1/2) Input and output of algorithm

Available observation (input)

- \triangleright measurements of attitude sensor, \mathbf{s}_i
- measurements of inertial sensor, u_i
- monocular images, I_i

Unknown quantities (output)

- ightharpoonup asteroid's attitude and ang.velo., \mathbf{r}_i , $\dot{\mathbf{r}}_i$ inertia moment, \mathbf{k} principal axis and centroid, $\mathbf{T}_{G \to B}$ shape (set of landmarks' position), \mathbf{l}_k
- spacecraft's position and attitude, z_i

Problem formulation of Asteroid SLAM (2/2)

Models on asteroid, camera, attitude sensor and inertial sensor

Calibrated camera model

$$\mathbf{y}_{i,j} = \left(\mathbf{K} \circ \mathbf{z}_i^{-1} \circ \mathbf{r}_i \circ \mathbf{T}_{G \to B} \right) \mathbf{I}_{c_{i,j}} + \mathbf{e}_{landmark}$$

+ attitude s_i inertial u_i

Spacecraft's dynamis model

not specified, but possibly set

Asteroid's dynamics model (Euler's equation)

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \mathbf{\alpha}_i \\ \dot{\mathbf{\alpha}}_i \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \left(\gamma_i \dot{\mathbf{\alpha}}_i + \dot{\mathbf{\alpha}}_i \times \mathbf{\alpha}_i - \eta_i \mathbf{\alpha}_i \right) \\ \mathbf{J}^{-1} \left(-\dot{\mathbf{\alpha}}_i \times \mathbf{J} \dot{\mathbf{\alpha}}_i + \mathbf{W}_2 \right) \end{bmatrix},$$

$$\boldsymbol{\alpha}_i = \log(\mathbf{r}_i)$$

Calibrated attitude sensor model

$$\mathbf{u}_i = \mathbf{z}_i \cdot (\mathbf{z}_{i-1})^{-1} \cdot \exp(\mathbf{e}_{\text{inertia}})$$

Calibrated inertial sensor model

$$\mathbf{s}_{i} = R(\mathbf{z}_{i}) \cdot \exp(\mathbf{e}_{sensor})$$

Proposed method

Overview of proposed method

(1) Initial landmark configuration Configure visual landmarks only with local image descriptors

- Extract features points using SIFT [Lowe 04]
- 2. Search match for **all feature points in adjacent image** as candidate, resulting in low recall 🙁
 - because no estimation of geometry is obtained at first
- 3. Eliminate errors strictly, resulting in even lower recall ⊗
 - removing infrequent matches
 - removing inconsistent matches by RANSAC

(2) Estimation of unknown quantities: initialization Incremental optimization of unknown quantities

Iteration:

- 1. initialize quantities on new frame (image)
- 2. add initialized quantities to optimization procedure
- 3. solution update
- Robust initialization is not easy because of monocular images
 - 1. initialize spacecraft's pose by attitude and inertial sensors
 - 2. initialize asteroid's attitude by five-point method, PnP solver or numerical integration
 - ✓ method is to be empirically chosen
 - 3. initialize new landmarks' position by triangulation
 - ✓ centralize depth for first pair of images

(2) Estimation of unknown quantities: update Incremental optimization of unknown quantities

- Iteration:
 - 1. initialize quantities on new frame (image)
 - 2. add initialized quantities to optimization procedure
 - 3. solution update
- Solver: incremental smoothing and mapping [Kaess+, '08]
 - ightharpoonup given model f(u,o)=0 on unknown and observed quantities, incrementally minimize Mahalanobis distance $|f(u,o)|_{u,\Sigma}^2$

(3) Additional landmark configuration Configure new landmarks with geometric information

- "Reuse" disposed feature points in initial landmark configuration
 - searching match for feature points only in anticipated region as candidate
 - with first-stage estimation of relative position/attitude
- Further improvement: store visual features and use them to compensate viewpoint changes

Proposed method: overview (again)

Ordinary procedure of SLAM, but with dedicated models for asteroid explorer and careful initialization procedure for robustness.

Experiment

Preliminary experiment: setup

- Asteroid (Itokawa) model with 1,000 vertices
 - rotating by 0.088 [rad/img]

- 72 images with randomly-moving camera
 - random walk: mean=0, std=10 [m/img], 0.01[rad/img]
 - occlusion on backside of asteroid
 - random missing of observation

- Measurement noises:
 - \rightarrow camera \rightarrow mean=0, std=0.1[px]
 - ➤ attitude sensor → mean=0, std=0.01[rad]
 - inertial sensor → mean=0, std=10[m], 0.01[rad]

Preliminary experiment: result

- RMS error of estimated shape: 1.46m (Itokawa>500m) (left)
- Position/attitude of spacecraft is successfully estimated (right)

(Preliminary results, and more experiments are necessary)

Experiment plan

- With images of asteroid mockup
 - accurate landmark configuration is possible [Takeishi+, '15]

- With images of rotating object taken on ground
 - incorporating gravity into the model is straightforward

- With synthetic graphics
 - to investigate effect of lean of rotation axis

Summary: Asteroid SLAM

- First full formulation of SLAM problem for descending phase of asteroid exploration
 - Outputs
 - ✓ asteroid's attitude and angular velocity inertia moment principal axis and centroid shape
 - ✓ spacecraft's position and attitude
 - Inputs
 - ✓ measurements of attitude sensor
 - ✓ measurements of inertial sensor
 - √ images
- Need more experiments!

*Estimation framework

Incremental optimization of unknown quantities

- Optimization of unknown quantities given observation under dynamics & sensor models
 - \blacktriangleright model: f(u, o) = 0
 - ightharpoonup minimize Mahalanobis distance $|f(u, o)|_{u, Σ}^2$
- Incremental optimization
 - initialize quantities on new frame
 - add initialized quantities to optimization procedure
 - update by iSAM [Kaess+ '08]

